PAGE

	[image: image8.png] NCICB
	National Cancer Institute Center for Bioinformatics

Director's Challenge (DC) Project

Gene Expression Data Portal (GEDP)

System Design Document

 Table of Contents

41.1
Introduction

41.1.1
GEDP Overview

51.2
System Architecture Overview

51.2.1 High Level Description

61.2.2 High Level Architectural Diagram

61.2.3 High Level Description of Request Processing

92.1 GEDP Architecture

92.1.1 Architecture Overview

92.1.2 The GEDP Controller Element—ManagerServlet……………..

92.1.2 Enforcing Application Security with the ManagerServlet…

102.1.4 Centralizing Navigation Logic with the ManagerServlet
….

102.1.5 Processing Request Parameters—The RequestHandler….

112.1.5 The Model Layer Delegate: BusinessService Interface…..

112.1.6 The ServiceBean: Model Layer Business Logic ………….….

122.1.7 The Model Layer Data Access Component………………………

122.2 Data Access Layer

122.2.1 Data AccessBean Objects
…

122.2.2 DataAccessBean Helper Classes……………………………………..

142.3 Asynchronous Method Invocations: Manager Objects

152.4 System Configuration

152.4.1 “Configurability” Overview

172.4.2 Detailed Descriptions of GEDP Configuration Files

253.1 Database Schema

253.2 File Management

253.2.1 File Access

274.1 Use Case Analysis

1. Overview

1.1 Introduction

1.1.1 GEDP Overview

The Gene Expression Data Portal (GEDP) currently features a standards-based database, form-based upload utility, an experiment search function, and the eXpressionWay pathway visualization tool. The GEDP as envisaged will eventually encompass a wide variety of data analysis and visualization tools. Several of the biological analysis tools will be implemented utilizing NCICB's cancer Bioinformatics Infrastructure Objects (caBIO).

In addition, the UserProfileBean component of the GEDP architecture (vida infra) enables the client to personalize his/her user experience via cached information regarding preferences, previously submitted experiments and array designs. In addition, the UserProfileBean encapsulates parameters utilized by the GEDP role-based security and data access components that together ensure appropriate access to application resources.

The currently implemented components of the GEDP are as follows:

· Standards-Based Data Model

· Open Source Extensible and Configurable API (Source Code Available for Download in Near Future)

· Standards-Compliant Database

· Form-Based Data Submission (Including Data and Image Files)

· Basic Experiment Search Tool

· Mapping of Oligo Probe Set and Spotted Array Clone Id’s to GenBank Id’s

· UserProfileBean Encapsulating Preferences and Permissions

· eXpressionWay Pathway Visualization Tool

· Interface to R Statistical Analysis Tool Module

· XML (Specifically MAGEML) Document Generation

· Support for GenePix, Affy MAS 4.0 and 5.0, Ann Arbor Suite Platforms

1.1.2 MAGEML Overview

MAGEML, or Microarray Gene Expression Markup Language, is an industry standard that was approved in spring, 2002 by an international standards board (Object Management Group). The MAGEML standard represents the convergence of two competing standards, MAML (Microarray Markup Language) and GEML (Gene Expression Markup Language). The academic community supported the MAML standard, whereas GEML was being developed by a consortium of several informatics companies; consequently, the convergence of the two standards translates into broad support for MAGEML, rendering it the standard for the description of microarray experiments.

MAGEML is the XML implementation of the MIAME (Minimum Information About a Microarray Experiment) standard and the associated Microarray Gene Expression object model, or MAGE-OM, both of which are designed to encapsulate all of the annotations and data required to describe a microarray experiment. Importantly, the MAGEML standard is technology and platform-independent, thereby enabling the description of an oligo or spotted array experiments, as well as CGH and SAGE studies, with the same standard. Moreover, the same MAGEML standard can describe raw experimental data, that which has been processed (normalized, filtered, etc.), or even the results from a cluster analysis.

Thus, MAGEML provides the means of describing in a standard XML data exchange format the data (both raw and processed), rationale of the study, factors tested (i.e., effect of gene knockout), and experimental details that represent both the results and the context of a microarray experiment.

The core of the GEDP is comprised of MAGE-OM-based object and data models utilized in the design of the microarray database, as well as the experiment upload utilities. The GEDP schema is modeled upon the MAGE-OM, which serves as the basis for the MAGEML standard.

Consequently, data may be uploaded to or downloaded from the GEDP site in a format that facilitates the exchange of data between other data stores. A MAGEML document is generated upon experiment submission and is made available for download.
1.2 System Architecture Overview

1.2.1 High Level Description

The Gene Expresson Data Portal (GEDP) architecture is designed to provide an extensible and configurable API, enabling rapid development and deployment of new functionality, as well as the dynamic tuning of application behaviors. To that end, the GEDP architecture employs several design patterns to ensure that developers program to the interface, as opposed to the implementation, of each layer.

The GEDP application is currently a two-tiered architecture whose components are hosted by a J2EE web container—Servlets, JSP’s, helper classes and data objects—and a relational database. The GEDP architecture combines several Gang of Four (GoF) design patterns with J2EE design patterns culled from best practices as defined by Sun Microsystems. The result is a system design that is intuitive as the package and class designs are implementations of design patterns and concepts that should be very familiar to an experienced Java developer.

1.2.2 High Level Architectural Diagram

As shown in Figure 1-1, the GEDP architecture is divided into five layers, some or all of which may handle an incoming request. The core design pattern of the GEDP architecture is the Model View Controller (MVC) pattern which now serves as the de factor standard for designing web applications as evidenced by the emergence of STRUTS as a highly popular development framework.

 Controller
 View
 Business Delegate
 Model Data Sources
[image: image9.wmf]FormDataBean

(from bean)

FormInputBean

(from bean)

0..1

1

+data

0..1

+input

1

FormInputSQLBuilder

(from mapping)

1

1

1

+insert builder

FormQuerySQLBuilder

(from mapping)

1

QueryInputBean

(from bean)

QueryDataBean

(from bean)

1

0..1

1

0..1

FormMapping

(from mapping)

1

+convert/insert

1

0..*

1

0..*

+statement metadata

1

+query input metadata

+form input metadata

1

+query metadata

1

1

0..*

0..*

1

Figure 1-1

1.2.3 High Level Description of Request Processing

All incoming requests are processed by one Controller element, the ManagerServlet, which serves as the entry point into the application. Importantly, with the exception of the welcome page, none of the View components can be accessed directly by a client, thereby greatly enhancing and simplifying security and access management.

Once a series of checks are performed, the ManagerServlet forwards the request to the RequestHandler object which checks the input data for correctness per business rules and prepares the data for transfer to the BusinessService layer. The BusinessService component serves as a Delegate for the Model layer components, and as such, uses the data transferred by the RequestHandler layer to invoke methods upon the appropriate set of ServiceBean and DataAccessBean objects to perform the business and data access logic, respectively, required by the incoming request.

The Model layer in the GEDP is implemented as ServiceBean and DataAccessBean classes the represent the objects encapsulating business and data access logic. The ServiceBean and DataAccessBean components of the GEDP architecture are interfaces, and, consequently, as the technologies employed expand beyond the web container (EJB, JMS, Web Services, etc…), the View and Controller elements are shielded from changing implementations of business and data access logic.

Access to a variety of data sources—relational databases, XML documents, text documents, and Excel spreadsheets are all performed by DataAccessBeans. As noted above, the DataAccessBean component of the GEDP architecture is an interface, so the type of data storage mechanism is abstracted from the remainder of the Model layer as well as the Control and View layers.

1.2.4 The Login to Web Application Use Case: A Sequence Diagram Description

The implementation of the 1.3 Login to Web Application use case illustrates the processing of an incoming request across all layers of the GEDP application; a sequence diagram describing this use case appears in Figure 1-2 below.

The request processing commences with a web client invoking a doPost() upon the ManagerServlet, which invokes a set of methods upon itself that enforce application and access control and security. The checkLoginCompliance() method checks to see if the requested resource requires the user to be logged in, and if so, verifies a valid logged in session by checking for a session-scoped variable, a UserProfileBean. If the requested resource requires that the user be logged in, the checkSecurityPermission() method is invoked to determine if the user’s profile (encapsulated in UserProfileBean bound to his/her session) to determine if the user has the role(s) required to access the resource.

Once all required security checks have been performed, the RequestHandler for the incoming request is retrieved. The RequestHandler layer first extracts the request parameters, performs validation, etc… In this case, The LoginHandler captures the submitted username and password. Following any validation, the RequestHandler transfers the name-value parameters to a DynamicBean class, a TemporaryDataBean, which is a lightweight, technology-agnostic container object used to transfer data between application layers.

The TemporaryDataBean encapsulating the login parameters is passed to the LoginService object, this use case implementation of the BusinessService interface. The BusinessService object provides the ServiceBean with the resources required to perform the requested business logic, in the case of the Login to Web Application use case, a database Connection object, along with the parameters encapsulated in the TemporaryDataBean.

The LoginService instantiates a LoginServiceBean for the request and invokes the performService() method upon the ServiceBean implementation. The LoginServiceBean invokes the select() method upon the UserProfileBean object, which is the use case implementation of the DataAccessBean interface.

Following the execution of all business and data access logic, any method return values are encapsulated in a TemporaryDataBean named returnValues returned to the LoginService. If an Exception is thrown, the LoginService object catches the Exception(s) and rethrows the Exception(s) as a ServiceException. Such a practice, known as Exception Translation, shields the View and Controller layers from the technology specifics of the Model layer implementation (EJB, JMS, etc…)

[image: image1.wmf]profileBean :

UserProfileBean

ManagerServlet :

ManagerServlet

LoginHandler :

LoginHandler

loginService :

LoginService

loginServiceBean :

LoginServiceBean

login.jsp

TemporaryDataBean

performService(Object)

LoginServiceBean()

setServiceParameters(Object)

performService()

select()

forwardRequest(HttpServletRequest, HttpServletResponse)

processRequest(HttpServletRequest,HttpServletResponse)

setLoggedInSessionAttributes(HttpSession,TemporaryDataBean)

doPost()

checkLoginCompliance()

checkSecurityPermission()

Figure 1-2

The returnValues is returned to the LoginHandler and this RequestHandler implementation binds any requisite attributes to the HttpServletRequest being processed and updates the user’s Session to reflect that the user is now logged in. The LoginHandler invokes forwardRequest() upon itself and the request is forwarded to the desired View component (i.e., JSP).

All elements of the GEDP architecture will be discussed in greater detail in section 2.1, where each layer will be examined separately.

2.1 GEDP Architecture

2.1.1 Architecture Overview

As stated above in section 1.1.2, the core design pattern of the GEDP architecture is the Model View Controller (MVC) pattern first popularized in SmallTalk. Several other design patterns are judiciously applied to address the challenges associated with the large data sets processed in the context of a gene expression experiment submission. In addition, other design patterns are implemented to address the challenges specific to distributed J2EE applications.

2.1.2 Introduction to the GEDP Controller Element: The ManagerServlet.

The ManagerServlet serves as the Controller element of the GEDP application, and such an approach centralizing all Controller logic enhances modularity by separating all Controller logic from the Model and View tiers and simplifies application configuration by focusing security and navigation parameter decisions on one class, the ManagerServlet. The application is architected such that the ManagerServlet processes all incoming requests, regardless of the source or scenario.

Centralization of incoming request processing is enforced by the GEDP architecture whereby, with the exception of the welcome page, a client cannot directly access any JSP or HTML page. All View resources are accessed via an internal redirect from the ManagerServlet because the JSP and HTML resources are placed in a subdirectory of WEB-INF. Such a design is crucial to enforcing application security as the GEDP design prevents a user from accessing any View resource except the welcome page without having the ManagerServlet process the request.

Since the ManagerServlet serves as the Controller element of the GEDP, it encapsulates all logic required to navigate the GEDP. The Controller logic is separated into two broad categories: security and navigation management.

2.1.3 Centralizing and Enforcing Application Security with the ManagerServlet

The ManagerServlet enforces access control by two mechanisms: controlling access to resources that require login and an implementation of a role-based security system. For each incoming request, the ManagerServlet determines if the requested resource requires a login and, if so, determines if the user is logged in by checking for a UserProfileBean bound to his/her session. The resources requiring login are specified in the FormMapping.loginMap, an object configured dynamically at application startup.

If the requested resource requires login, the ManagerServlet verifies the user is logged in. Also, by default all resources requiring login have one or more roles associated with them. For example, to access the experiment submission screen, the user must have a “Submitter” role assigned to his/her UserProfile. The ManagerServlet compares the roles encapsulate in the UserProfileBean and grants access accordingly.

In addition to checking for login and role-based access rules compliance, the ManagerServlet also handles situations where a user’s session times out. If the user attempts to continue a request within a login-protected section of the application, a TimedOutSessionException is thrown and the user is redirected to the welcome page.

2.1.4 Centralizing Navigation Logic with the ManagerServlet

Once the ManagerServlet has performed all required security checks, the ManagerServlet sets the resource the request is to be forwarded to. The resources are registered with the application by mapping out a set of scenarios that map to JSP or HTML page names, which are encapsulated in the dispatcherScenarioMap. As with the loginMap mentioned above, the dispatcherScenarioMap is configured dynamically at application startup.

Depending upon the selection of the user captured in the View component, a Scenario number is bound to the HttpServletRequest object. The ManagerServlet matches up the Scenario number with a resource. Consequently, any changes to application navigation scenarios are centralized in one location—the ManagerServlet via a configuration file. The View components do not have to be altered to change the workflow of the application; any such changes are captured in a configuration file and enforced by the ManagerServlet.

2.1.5 Processing Business Logic Request Parameters—The RequestHandler

Following processing by the ManagerServlet, which enforces and sets all security and navigation parameters, the HttpServletRequest is forwarded to the RequestHandler layer. The ManagerServlet delegates all request processing not pertaining to security or navigation to the RequestHandler layer, thereby ensuring a clear demarcation between Controller and View components—an important design concept embedded in the MVC design pattern.

The RequestHandler layer serves solely as the business logic request parameter processing class. Thus, the RequestHandler objects serve as an intermediary between the web client and the BusinessService layer.

The RequestHandler object in a request first captures the input encoded in the request and performs any validation, required field checking, simple transformations, etc… required by the use case. Once the data is verified and ready for forwarding to the BusinessService layer, the data is transferred to a TemporaryDataBean, which is a simple implementation of the DynamicJavaBean interface.

As seen in Figure 2-1, the DynamicJavaBean interface is a simple, implementation-agnostic container class for name-value pairs. Consequently, the input data is transferred to a generic container class by the RequestHandler, thereby shielding the BusinessService layer from the client implementation details. Such a design enables the swapping of a variety of clients (J2ME-enabled phone, Web Services, etc…) for the current GEDP client, a web browser.

The request parameters encapsulated by a TemporaryDataBean are transferred to the BusinessService layer via the BusinessService.performService() method. Once the business and/or data access logic specified by the corresponding use case has been invoked, the set of method return value(s), also encapsulated by a TemporaryDataBean,

 [image: image2.wmf]DynamicJavaBean

getPropertiesMap()

setProperty()

getProperty()

removeProperty()

getPropertyNames()

getProperties()

hasProperty()

clearProperties()

setProperties()

(from bean)

 Figure 2-1

Is processed by the RequestHandler; such processing can include updating the user’s Session, preparing the data for the View element, etc…

Following business logic invocation upon the BusinessService object associated with the RequestHandler and client-specific processing of the method return value(s), the RequestHandler forwards the request to a location specified and bound to the incoming HttpServletRequest by the ManagerServlet (Controller) via the forwardRequest() method.

2.1.6 The Model Layer Delegate: BusinessService Interface

The BusinessService layer serves as a Business Delegate as defined in the J2EE Best Practices and Design Patterns by Sun. The BusinessService layer shields the client, currently a RequestHandler, from the implementation-specific details of the business logic and data access components of the GEDP application; this approach reduces coupling between the presentation tier (View) and the business logic and data access tier (Model).

The BusinessService layer abstracts the Model layer implementation in two important ways. Firstly, distributed object lookup details such as obtaining a reference to a JMS connection or EJBHome object is accomplished by the BusinessService object. The result is that the client, the RequestHandler, is shielded from the details of instantiating the business object, enabling the implementation of the Model layer to evolve without impact on the View layer.

In addition to business object lookup, the BusinessService abstracts the Model layer implementation via Exception Translation. Thus, any implementation-specific, service level exceptions such as an EJBException, JMSException, or FinderException are rethrown as an application level ServiceException. Thus, the client is shielded from catching any Model layer implementation-specific exceptions.

2.1.7 The ServiceBean: The Model Layer Business Logic Component

Classes that implement the ServiceBean interface represent the GEDP Model layer business objects. Thus, functionality to implement the functionality specified in use cases such as logging into the system, creating a user, etc… is encapsulated in the ServiceBean implementing classes. The ServiceBean classes are analogous to an EJB SessionBean.

2.1.8 The Model Layer Data Access Component: The DataAccessBean

The DataAccessBean interface represents the abstraction of the data storage component in the GEDP architecture. As shown in Figure 2-2, the DataAccessBean interface declares standard persistence, update, delete, and search methods in the definition, providing the same public interface, or “contract” to calling objects regardless of the storage type (RDMBS, ODBMS, XML Database, Text Files, etc…).

 [image: image3.wmf]DataAccessBean

setAccessDevice()

setHelperObjects()

persist()

select()

update()

delete()

(from bean)

 Figure 2-2

2.2 Data Access Layer

2.2.1 DataAccessBean Objects

The Data Access layer consists of DataAccessBean objects as well as an Object to Relational (O/R) mapping component composed of helper classes discussed in Section 2.2.2. All DataAccessBean objects implement the DataAccessBean interface. As noted above in section 2.1.8, all persistence logic is abstracted away from the developer, meaning that the remainder of the application is unaware of whether the implemented insert() statement persists the data to a relational or flat file database. Further, any database-specific, service-level exceptions (i.e., SQLExceptions) are re-thrown as application-level, DataAccessBeanException objects. The combination of Exception translation and a generic data access interface yields true data access abstraction.

2.2.2
Description of DataAccessBean Helper Classes: Persistence of Form Data

Data captured via form input in the GEDP is persisted to the database by an object graph shown in Figure 2-3. Thus, the FormInputBean encapsulates all data captured from form input. In addition, the FormInputBean is responsible for setting up the relationships between the data elements (i.e., between an Experiment and any associated Protocols). The FormInputBean is passed into the FormDataBean.

The FormDataBean delegates to the FormInputSQLBuilder the logic to dynamically build the batch SQL insert statement. The FormInputSQLBuilder constructs the SQL statements by combining the data encapsulated by the FormDataBean with the database metadata encapsulated by the FormMapping class.

[image: image4.wmf]FormInputSQLBuilder

(from builder)

FormMapping

(from mapping)

-$mapping

#mapping

FormDataBean

(from bean)

FormInputBean

(from bean)

 Figure 2-3

2.2.3
Persistence of Experiment Data: MicroarrayParseBean

There are two major components to gene expression experiment data: annotations and ontologies captured from form input, along with raw expression data captured from uploaded data files. The MicroarrayParseBean class, as shown in Figure 2-4, is an abstract class encapsulating the majority of the parse and persistence logic required to read an gene expression data file and save it to the database.

 [image: image5.wmf]MicroarrayParseBean

setBioAssayName()

clearProperties()

getProperty()

parseFile()

persist()

setBeanData()

setProperty()

GenePixParseBean

AffyParseBean

Figure 2-4

The two derived classes, AffyParseBean and GenePixParseBean, correspond to the two platforms the GEDP currently supports in terms of 1) persisting the expression values to the database and 2) enabling analysis tools such as eXPressionWay to utilize the expression data. The protected parseFile() method is declared abstract, indicating that the classes extending MicroarrayParseBean differ primarily in the business rules associated with parsing a data file and setting the corresponding DynamicBean properties.

2.3 Asynchronous Method Invocations Via Messaging: Manager Objects

Given the large amount of data associated with a gene expression experiment, it became clear that calls to the MicroarrayParseBeans to parse and persist data files should proceed through an asynchronous method invocation; such an approach prevents the user from having to wait for the entire experiment data set to be saved to the database, a process which can take anywhere from 5 to 20 minutes, depending upon the number of data files uploaded and the platform type.

Moreover, a call to a MicroarrayParseBean via the standard request-reply model would potentially result in scalability issues as the web container thread would block until the method return. In other words, given a finite number of threads in the web container, blocking one or more threads for extending periods of time will greatly decrease the number of concurrent users the application can support.

In addition to enabling asynchronous method invocations, another design consideration was to decouple the form data submission from processing of expression data files. Since more than one class is involved in parsing, persisting, and preparing data files for download, we decided upon a local event handling paradigm whereby the SubmissionHandler object fires an event that the data file processing classes would respond to.

As seen in Figure 2-5, the Manager classes, in this case, the FileManager, serve

[image: image6.wmf]AbstractManager

logPath : String

AbstractManager()

setLogWriter()

writeLogMessage()

respond()

respond()

Listener

respond()

respond()

(from util)

Queue

put()

take()

(from util)

FileManager

FileManager()

respond()

respond()

invokeFileMover()

getFiles()

getFiles()

moveFiles()

areDataFiles()

isDataFile()

areCelFiles()

isCelFile()

WorkerThreadQueue

waiting : boolean

shutdown : boolean

WorkerThreadQueue()

verifyWorkerThread()

setShutdown()

put()

take()

(from util)

#queue

RunnableTask

execute()

(from util)

executes

Figure 2-5

the role of providing a decoupled, asynchronous method invocation object. The AbstractManager provides the base implementation for the Manager classes.

The AbstractManager implements the Listener interface, enabling it to respond to the submit form data event. The WorkerThreadQueue object provides the Manager classes with a daemon thread that responds to events, in this case, the form submission event. Requests are added to the queue object as a RunnableTask and the WorkerThread executes the RunnableTasks sequentially.

The TextParseManager and FileManager both respond to the form submission event, each performing a specific set of related tasks that, if called via a standard method invocation, would block the web container thread for a significant period of time.

The current Manager implementations utilize a local event handling mechanism. In the future, JMS will be used to move the processing of data files from the web container JVM to a remote JVM dedicated to data file processing.

2.4 System Configuration

2.4.1 “Configurability” Overview

The GEDP API is designed to enable an administrator to tune and customize many application behaviors simply be editing XML configuration files. Some of the web application behaviors that can be configured are as follows:

· Required Fields

· Mapping of Objects, Database Tables, or XML Elements to Forms

· Dependent Fields (e.g., the Input of One Field Affects the Requirements of One or More Other Fields)

· Common Fields Appearing in Two or More Form Pages

· Retrieved Elements Vs. Submitted Elements (For Referential Relationships Between Elements)

· Expected Upload File Types and File Format Validation

· Auto-Assigned Elements for Experiment Submission

· Multi-Occurring Elements

· Error Codes and Corresponding Messages (Both Data Type and Business Logic Errors)

· Automated O/R Mapping Configuration via Database Metadata Utility

· DynamicJavaBean attributes (properties) for Input, Persistence, and Domain Object Beans

The core of the “configurability” of the GEDP architecture is the database metadata-driven Mapping object. An automated executable utility class reads the database schema and generates a database metadata XML file that specifies several database attributes including table and column names, column data types, foreign and primary keys, list of associative tables, as well as associative table parent-child entities (1..n role relationships). The database metadata XML file, along with the remaining XML configuration files that are specified by an administrator, are loaded into the derived FormMapping object upon application startup.

Importantly, if any changes to the database schema are made, in the case of the GEDP application due to changes in the MAGEML standard, no changes to the code are necessary. The DatabaseMetadataUtil class is used to generate a new metadata.xml file, which is parsed by the Mapping class and derived classes that handle updates to the Java portion of the application.

The FormMapping object is the in-memory source of metadata used to dynamically configure the GEDP application. Consequently, several components of the GEDP application utilize the FormMapping object to tune their respective behaviors. For example, as shown in Figure 2-6, the FormInputBean and FormQueryBean objects that capture and process form input for experiment submission and SQL query building, respectively, both utilize the FormMapping object.

 Figure 2-6

2.4.2 Detailed Descriptions of GEDP Configuration Files

There are several configuration files utilized to tune various aspects of GEDP business logic as noted in Section 2.4.1. Detailed descriptions of each configuration file are presented below along with examples to illustrate their use.
carry_over.xml

The carry_over.xml file specifies the fields containing name-value pairs to be captured and bound to the HttpServletRequest object. The purpose of the “carry over” concept is to enable the application to forward name-value pairs to Servlets (including JSPs) that will process the values outside the context of the RequestHandler object the ManagerServlet forwarded the request to initially. The ReloadHandler and derived classes append name-value pairs that will only be processed by the View layer in support of displaying information in the resource the request is to be forwarded to.

Example

<search_detail fields="platform_type experiment_id queryAudience"/>

In this example, the platform_type, experiment_id, and queryAudience field values are carried over to the next page, which may simply be a page reload where the pages values will be redisplayed or forwarded to another page where the field values will be utilized in another fashion (i.e., page rendering logic).

error_codes.xml

The error_codes.xml file maps the database data type to an error message. Thus, for a field whose value should be an integer, a non-integer entry will result in an error that will trigger the forwarding of the HttpServletRequest to an error page, where the integer data type will result in the display of the message “The [field name] Must Be an Integer”.

Example

<integer number="3" message=" Must Be an Integer"/>

In this example, the data type 3, which is an integer, will map to the message that the data file “Must Be an Integer”

field_name.xml

The field_name.xml file maps the name of a form input field to that of the name displayed to the user. For example, the protocol_type field is mapped to Protocol Type Name, which is what the user sees. The field_name.xml mappings are used to dynamically generate error messages based upon missing required fields or incorrect data entry as well excel column names to database column names, xml element names, or object attributes in the case of the SPOREs application.

Example

<manufacturing_date name="Chip Manufacturing Date"/>

In this example, the manufacturing_date field, which is required for a form submission, maps to the name that the user sees in the form as being “Chip Manufacturing Date”; this mapping will be used to dynamically generate the following error message: “The Chip Manufacturing Date Field Must Be Filled In”.

forms.xml

The forms.xml file is perhaps the most important configuration file in that it maps database tables, xml elements, or objects to a form. The FormInputHandler and derived classes use the list of tables, xml elements, or objects mapping to a form to iterate through the possible list of all fields that may map to a form, performing checks such as data type, required fields with non-null entries, etc…

Example 1

<general_info tables="experiment person organization biosource"/>

In this example, the database tables experiment, person, organization, and biosource all have one or more columns mapping to the general_info form. The FormInputHandler is now configured to perform data type checking and set up any parent-child relationships depending upon the data model.

Example 2

<general_info objects="ClinicalTrial ProjectAward EndPoint"/>

In Example 2, the objects ClinicalTrial, ProjectAward, and Endpoint map to the general_info form. In this case, the FormInputHandler is configured to perform data type checking on all object attributes, along with registering the objects as “active”, meaning that the SubmissionHandler will call the persistence objects for ClinicalTrial, ProjectAward, and Endpoint. In addition, the FormInputHandler will set up any applicable object relationships.

login.xml

The login.xml file contains the names of resources (i.e., JSPs) that require the user to be logged in. The ManagerServlet will check the resource each request is to be forwarded to. If the resource requires a login, the ManagerServlet will verify the requestor is logged in, and if the user is not, a LoginRequiredException is thrown and the user is forwarded to a login screen.

Example

<index.jsp required="false"/>

This example entry indicates that the resource, login.jsp, does not require the user to login.

magemltemplate.xml

The magemlemplate.xml file contains xml element to database mappings required to generate MAGEML documents.

Example

<Hardware identifier="hardware_id" make="make" model="model" URI="hardware_uri">

In this example, the Hardware XML element attributes identifier, make, model, and URI map to the database table columns hardware_id, make, model, and hardware_uri, respectively

magemldatabase.xml (metadata.xml)

The magemldatabase.xml file is the database metadata file generated by the DatabaseMetadataUtil object; this xml file contains detailed database table information such as data types, column names, foreign and primary keys, etc… that the Mapping class and all derived classes utilize to configure several Collections and Maps used by the majority of the GEDP components.

For example, the FormFieldProcessor utilizes the Mapping.dataTypesMap to verify that the form input value is of the correct data type.

In this example, there are several columns mapping to the attributes of the Array class. The <primary_keys> element indicates the name of the PK field. The <foreign_keys> element specifies the names of the FK columns, indicating that the array table is a child to the array_design table. The <exported_keys> elements indicate the tables that the array table is a parent to.

Example

<array>

<array_id column="1" type="3"/>

<array_design_id column="2" type="3"/>

<lot_number column="3" type="12"/>

<manufacturing_date column="4" type="91"/>

<primary_keys columnName= "array_id"/>

<foreign_keys columnName= "array_design_id"/>

<exported_keys pkColumnName= "array_id" fkTableName= "array_manufacture" fkColumnName= "array_id"/>

<exported_keys pkColumnName= "array_id" fkTableName= "array_manufacture_deviation" fkColumnName= "array_id"/>

<exported_keys pkColumnName= "array_id" fkTableName= "fiducial" fkColumnName= "array_id"/>

<exported_keys pkColumnName= "array_id" fkTableName= "multiarray_array" fkColumnName= "array_id"/>

<exported_keys pkColumnName= "array_id" fkTableName= "physical_bioassay" fkColumnName= "array_id"/>

</array>

maps.xml

The maps.xml file is used to configure DynamicBeans that serve as domain value objects that do not have explicit setXXX and getXXX methods. The attribute name is mapped to a database table and column, and thus configures the O/R mapping layer. In the example shown below, the contact instance attributes are shown to map to the following database table columns.

Example

<Object name="contact" primaryKey="contact_id">

<Attribute name="contact_id" table="contact" col="contact_id"/>

<Attribute name="contact_uri" table="contact" col="contact_uri"/>

<Attribute name="address_1" table="contact" col="address_1"/>

<Attribute name="city" table="contact" col="state"/>

<Attribute name="state" table="contact" col="state"/>

<Attribute name="zip" table="contact" col="zip"/>

<Attribute name="phone" table="contact" col="phone"/>

<Attribute name="email" table="contact" col="email"/>

<Attribute name="fax" table="contact" col="fax"/>

</Object>

multi_occurring.xml

The multi_occurring.xml file is used to specify which forms contain elements that the user may fill out more than once for an overall form submission. For example, there may be multiple Protocols associated with one Experiment. If the element has a 1:1 relationship with the parent submission object, in the case of GEDP, Experiment, than multiple posts from the same form will overwrite previously submitted values. If there is a 1:N between the parent element and dependent (such as Experiment and Protocol), then multiple posts from the same form will be captured as distinct entities, with each being persisted to the database.

Example

<hardware multi_occuring="parameter_name parameter_value parameter_type"/>

navigation.xml

The navigation.xml file contains mappings of scenario numbers and corresponding resources; this file enables the specification of one or more resources a request is to forwarded to without specifying the name of the resource (i.e., .html or .jsp file). Thus, the user does not know the actual names of any of the GUI screen files, and forwarding destinations are specified in one place. Further, changing the screen workflow does not require changes to the JSPs or HTML pages—only to the navigation.xml file.

non_persisted.xml

Any field name-value pairs that should be captured from a form but do not map to an element or object that is to be persisted is specified in the non_persisted.xml file. An example is the experiment_design_name, a field that is used to look up the experiment_design_id that is used in the persistence of the experiment element.

placeholder.xml

The placeholder.xml file contains the names of elements that may be captured once but are used multiple times. For example, all elements that describe sample specific information such as age or tissue can be filled in once on the Common Sample Information screen if it is common across all samples.

place_holder_types.xml

The placeholder_types.xml file is used to specify the data type expected for each placeholder value.

pool.properties

The pool.properties file is used to configure the database ConnectionPool class object with information such as JDBC driver type, database username/password, etc…

queries.xml

The queries.xml file is used to configure the FormQuerySQLBuilder class which dynamically generates SQL query code.

required_fields.xml

The required_fields.xml file is used to specify which fields are required for each form. If a required field is null, a form error is logged and the user is directed to an error page and notified which required field(s) is/are null.

Example

<form name="hardware">

<fields name="individual">

<field name="make" required="true"/>

<field name="model" required="true"/>

<field name="hardware_type" required="true"/>

</fields>

</form>

In this example, the hardware form contains three fields which are required, make, model, and hardware_type. The attribute “individual” indicates there should be one value of each field.

retrieved_id_to_name.xml

This configuration file is used to map cached information to forms to enable the association of previously submitted data to a current form submission. For example, metadata such as Experiment Design Name is cached and curated by the GEDP team and used for each Experiment submission. The name is mapped to a PK that will be used as a FK in any associated INSERT statement.

Example

<cdna_chip_info names="array_name" ids="array_design_id" overriden="array_design_id"/>

In this example, the array_name attribute is used to match the selected form field value with the PK of the array element. The overridden attribute, array_design_id tells the FormFieldProcessor that if this form field is not null, do not retrieve an existing record based upon the supplied array_name, but rather forward the request to the corresponding PersistenceBean to persist the new record to the database.

revisit.xml

For any forms that can be recalled and updated, the revisit.xml file is used to specify what fields to repopulate when the form is recalled.

Example

<general_info.jsp fields="experiment_design_type_name sample_type_name experiment_title experiment_description organism_ncbi_holder chip_type visibility_type_name"/>

In this example, the fields attribute values are fields in the general_info.jsp page to be populated from values encapsulated in the FormInputBean upon redisplay of the JSP or HTML page.

role.xml

The role.xml file is used to specify what roles, if any, are required to access a resource. When a user logs in, a UserProfileBean is appended to the Session, and a List of roles the user has assigned to his/her UserProfile is instantiated. For each request, the resource to be forwarded to is checked against mappings of resources to role lists by the ManagerServlet, thereby providing role-based security to the application.

If the user attempts to access a role-protected resource, and the user’s UserProfileBean does not contain the required role, an ApplicationAccessException is thrown and the user is denied access.

Example

<intro.jsp role="2"/>

This example indicates that, for the user to access the intro.jsp resource, the user’s UserProfileBean roles property (UserProfileBean.getProperty(“roles”)) List must contain the Integer 2, which specifies the “submitter” role.

shared_elements.xml

The shared_elements.xml file is used to specify any elements that are dependent elements associated with more than one type of parent.

Example

<parameter_id shared="protocol_id software_id hardware_id"/>

This example indicates that the parameter_id, and therefore parameter element, can be associated with the protocol, software, and hardware elements.

upload_directories.xml

The upload_directories.xml file associates a file type with the directory name the file is to be written to.

Example

<directorySet name="affyAllOthers">

<directory name="celfiles">

<file type="cel"/>

</directory>

</directorySet>

In this example, the cel file type is associated with the celfiles upload directory.

3. Data Warehouse

3.1 Database Schema

3.1.1 MAGEML-Based Data Model

The data model is based on the MAGE-OM (object model) implementation of the MAGEML standard with extensions to support clinical information. The clinical model is based on the North American Association of Central Cancer Registries (

 HYPERLINK "http://www.naaccr.org/Standards/Standards.html"
NAACCR) standard. Additional information including the Rational Rose Data Model and actual SQL can be found at the GEDP informatics web site: http://dc.nci.nih.gov/informatics/rationalRose/dataModel.

Basing the data model on MAGEML by way of MAGE-OM enables the generation of a MAGEML document via a lightweight, SAX event-driven XML generation approach that obviates the need to instantiate individual domain objects to produce XML. Given the volume of data associated with each experiment, and indeed with each data file, the overhead of instantiating the entire MAGE-OM object graph has been shown to result in a significant memory footprint (on the order of 50-75 MB).

3.2 File Management

3.2.1 File Access

Uploaded data files are compressed into .zip files by the FileManager and moved to experiment id-named folders for download. The files are downloaded from the search details page as shown in Figure 3-1. Thus, the data files available include the raw data files, the sample descrition file, the MAGEML document generated upon experiment submission, and, if applicable, the chip design file (i.e., GenePix .gal file).

The uploaded and generated experiment files are placed in a directory named according to the submitted experiment id to ensure the link between a submitted experiment and all of the associated data files.

 [image: image7.png]
Figure 3-1

4. Functional Features

4.1 Use Case Analysis

An important component of the NCICB iterative software development process is the capturing of user requirements for use case analysis. A series of use cases were written in the process of developing the GEDP. The use cases are available for inspection at the following url: http://dc.nci.nih.gov/informatics/rationalRose/useCases.

 ServiceBean

BusinessService

RequestHandler

 ManagerServlet

 JSP Pages

 DataAccessBean

RDBMS

XML

Text

2
24

